
International Journal of Theoretical Physics, Vol. 44, No. 7, July 2005 (C© 2005)
DOI: 10.1007/s10773-005-7064-9

Towards a Theory of Conservative Computing

G. Cattaneo,1,3 G. Della Vedova,2 A. Leporati,1 and R. Leporini1

Received August 14, 2004; accepted September 23, 2004

We extend the notion of conservativeness, given by Fredkin and Toffoli in 1982, to
generic gates whose input and output lines may assume a finite number d of truth
values. A physical interpretation of conservativeness in terms of conservation of the
energy associated to the data used during the computation is given. Moreover, we
define conservative computations, and we show that they naturally induce a new NP-
complete decision problem. Finally, we present a framework that can be used to explicit
the movement of energy occurring during a computation, and we provide a quantum
implementation of the primitives of such framework using creation and annihilation
operators on the Hilbert space C

d , where d is the number of energy levels considered
in the framework.

1. INTRODUCTION

Conservative logic has been introduced in (Fredkin and Toffoli, 1982) as a
mathematical model that allows one to describe computations which reflect some
properties of microdynamical laws of physics, such as reversibility and conserva-
tion of the internal energy of the physical system used to perform the computa-
tions. The model is based on the so-called Fredkin gate, a three-input/three-output
Boolean gate originally introduced by Petri in (Petri, 1967), whose input/output
map FG : {0, 1}3 → {0, 1}3 associates any input triple (x1, x2, x3) with its corre-
sponding output triple (y1, y2, y3) as follows:

y1 = x1, y2 = (¬x1 ∧ x2) ∨ (x1 ∧ x3), y3 = (x1 ∧ x2) ∨ (¬x1 ∧ x3)

1 Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano–
Bicocca, Via Bicocca degli Arcimboldi 8, 20126 Milan, Italy.

2 Dipartimento di Statistica, Università degli Studi di Milano–Bicocca, Via Bicocca degli Arcimboldi
8, 20126 Milan, Italy.

3 To whom correspondence should be addressed at Dipartimento di Informatica, Sistemistica e Comu-
nicazione, Università degli Studi di Milano–Bicocca, Via Bicocca degli Arcimboldi 8, 20126 Milan,
Italy; e-mail: cattang@disco.unimib.it.

861
0020-7748/05/0700-0861/0 C© 2005 Springer Science+Business Media, Inc.

862 Cattaneo, Della Vedova, Leporati, and Leporini

The Fredkin gate is functionally complete for the Boolean logic: by fixing
x3 = 0 we get y3 = x1 ∧ x2, whereas by fixing x2 = 1 and x3 = 0 we get y2 =
¬x1. A useful point of view is that the Fredkin gate behaves as a conditional
switch: that is, FG(1, x2, x3) = (1, x3, x2) and FG(0, x2, x3) = (0, x2, x3) for every
x2, x3 ∈ {0, 1}. In other words, the first input line can be considered as a control line
whose value determines whether the input values x2 and x3 have to be exchanged
or not.

According to Fredkin and Toffoli (1982), conservativeness is usually mod-
eled by the property that the output patterns of the involved gates are always a
permutation of the patterns given in input. Let us stress that this does not mean that
a fixed permutation is applied to every possible input pattern; on the contrary, the
applied permutation depends on the input pattern. Here we just mention the fact
that every permutation can be written as a composition of transpositions. Hence,
not only the Fredkin gate can be used to build an appropriate circuit to perform
any given conservative computation (and thus it is universal also in this sense
with respect to conservative computations), but it is also the most elementary
conceivable operation that can be used to describe conservative computations. In
this paper we will propose some analogous elementary operations with respect to
our notion of conservativeness.

The Fredkin gate is also reversible, that is, FG is a bijective map on {0, 1}3.
Notice that conservativeness and reversibility are two independent notions: a gate
can satisfy both properties, only one of them, or none. Since every reversible
gate computes a bijective map between input and output patterns, and every
conservative gate produces permutations of its input patterns, it follows that they
must necessarily have the same number of input and output lines.

In this paper we extend the notion of conservativeness to generic gates whose
input and output lines may assume a finite number d of truth values, and we
derive some properties which are satisfied by conservative gates. By associating
equispaced energy levels to the truth values, we show that our notion of conser-
vativeness corresponds to the energy conservation principle applied to the data
which are manipulated during the computation. Let us stress that we are not say-
ing that the entire energy used to perform the computation is preserved, or that
the computing device is a conservative physical system. In particular, we do not
consider the energy needed to transform the input values into output values, that
is, the energy needed to perform the computation.

Successively, we introduce the notion of conservative computation, based on
gates which are able to store some finite amount of energy and to reuse it during
the computation. We show that the decision problem to determine whether a given
computation can be performed in a conservative way through a gate which is able
to store at most C units of energy is NP-complete.

Finally, we introduce a framework that allows one to visualize the move-
ment of energy occurring during a computation performed by a generic gate. The

Towards a Theory of Conservative Computing 863

framework is based on some primitive operators that conditionally move one unit
of energy between any two given input/output lines of the gate. Using creation and
annihilation operators on the Hilbert space C

d , we show a quantum realization of
these non-unitary conditional movement operators.

2. CONSERVATIVENESS

Our notion of conservativeness, and the framework we will introduce, are
based on many-valued logics. These are extensions of the classical Boolean
logic which are widely used to manage incomplete and/or uncertain knowledge.
Different approaches to many-valued logics have been considered in literature:
for an overview, see (Rescher, 1969; Rosser and Turquette, 1952). However, here
we are not interested into the study of syntactical or algebraic aspects of many-
valued logics; we just define some gates whose input and output lines may assume
“intermediate” truth values, such as the gates defined in (Cattaneo et al., 2002).

For every integer d ≥ 2, we consider the finite set Ld = {0, 1
d−1 , 2

d−1 , . . .,
d−2
d−1 , 1} of truth values; 0 and 1 denote falsity and truth, respectively, whereas the
other values of Ld indicate different degrees of indefiniteness. As usually found
in literature, we will use Ld both as a set of truth values and as a numerical set
equipped with the standard order relation on rational numbers.

An n-input/m-output d-valued function (also called an (n,m, d)-function for
short) is a map f : Ln

d → Lm
d . Analogously, an (n,m, d)-gate and an (n,m, d)-

circuit are devices that compute (n,m, d)-functions. A gate is considered as a
primitive operation, that is, it is assumed that a gate cannot be decomposed into
simpler parts. On the other hand, a circuit is composed by layers of gates, where
any two gates G1 and G2 of the same layer satisfy the property that no output line
of G1 is connected to any input line of G2.

Let us consider the set Ed = {ε0, ε 1
d−1

, ε 2
d−1

, . . . , ε d−2
d−1

, ε1} ⊆ R of real values;
for exposition convenience, we can think to such quantities as energy values. To
each truth value v ∈ Ld we associate the energy level εv; moreover, let us assume
that the values of Ed are all positive, equispaced, and ordered according to the
corresponding truth values: 0 < ε0 < ε 1

d−1
< · · · < εd−2

d−1
< ε1. If we denote by δ

the gap between two adjacent energy levels then the following holds:

εv = ε0 + δ (d − 1) v, ∀ v ∈ Ld (1)

Notice that it is not required that ε0 = δ.
Now, let x = (x1, . . . , xn) ∈ Ln

d be an input pattern for an (n,m, d)-gate. We
define the amount of energy associated to x as En(x) = ∑n

i=1 εxi
, where εxi

∈ Ed

is the amount of energy associated to the i-th element xi of the input pattern. Let us
remark that the map En : Ln

d → R
+ is indeed a family of mappings parameterized

by n, the size of the input. Analogously, for an output pattern y ∈ Lm
d we define

864 Cattaneo, Della Vedova, Leporati, and Leporini

the associated amount of energy as Em(y) = ∑m
i=1 εyi

. We can now define a
conservative gate as follows.

Definition 2.1. An (n,m, d)-gate, described by the function G : Ln
d → Lm

d , is
conservative if the following condition holds:

∀ x ∈ Ln
d, En(x) = Em(G(x)) (2)

Notice that it is not required that the gate has the same number of input and
output lines, as it happens with the reversible and conservative gates considered
in (Cattaneo et al., 2002, in press; Fredkin and Toffoli, 1982).

Using relation (1), Equation (2) can also be written as:

ε0n

δ(d − 1)
+

n∑
i=1

xi = ε0m

δ(d − 1)
+

m∑
j=1

yj

Hence, when n = m (as it happens, for example, with reversible gates) conserva-
tiveness reduces to the conservation of the sum of truth values given in input, as in
weak conservativeness introduced in (Cattaneo et al., 2002). In the Boolean case
this is equivalent to requiring that the number of 1s given in input is preserved, as
in the original notion of conservativeness given in (Fredkin and Toffoli, 1982).

An interesting remark is that conservativeness entails an upper and a lower
bound to the ratio m

n
of the number of output lines versus the number of input

lines of a gate. In fact, the maximum amount of energy that can be associated
to an input pattern is

∑n
i=1 ε1 = n ε1, whereas the minimum amount of energy

that can be associated to an output pattern is
∑m

i=1 ε0 = m ε0. Clearly, if it holds
n ε1 < m ε0 then the gate cannot produce any output pattern in a conservative
way. As a consequence, it must hold m

n
≤ ε1

ε0
. Analogously, if we consider the

minimum amount of energy n ε0 that can be associated to an input pattern x and
the maximum amount of energy m ε1 that can be associated to an output pattern y,
it clearly must hold n ε0 ≤ m ε1, that is m

n
≥ ε0

ε1
. Summarizing, we have the bounds

ε0
ε1

≤ m
n

≤ ε1
ε0

, that is, for a conservative gate (or circuit) the number m of output
lines is constrained to grow linearly with respect to the number n of input lines.

A natural question is whether we can compute all functions in a conser-
vative way. Let us consider the Boolean case. Let f : {0, 1}n → {0, 1}m be a
non-necessarily conservative function, and let us define the following quantities:

Of = max
{
0, max

x∈{0,1}n
{Em(f (x)) − En(x)}}

Zf = max
{
0, max

x∈{0,1}n
{En(x) − Em(f (x))}}

Informally, Of (resp., Zf) is the maximum number of 1s (resp., 0s) in the output
pattern that should be converted to 0 (resp., 1) in order to make the computation
conservative. This means that if we use a gate Gf with n + Of + Zf input lines

Towards a Theory of Conservative Computing 865

and m + Of + Zf output lines then we can compute f in a conservative way as
follows:

Gf

(
x, 1Of

, 0Zf

) = (
f (x), 1w(x), 0z(x)

)
where 1k (resp., 0k) is the k-tuple consisting of all 1s (resp., 0s), and the
pair (1w(x), 0z(x)) ∈ {0, 1}Of +Zf is such that w(x) = Of + En(x) − Em(f (x)) and
z(x) = Zf − En(x) + Em(f (x)).

As we can see, we use some additional input (resp., output) lines in order to
provide (resp., remove) the required (resp., exceeding) energy that allows Gf to
compute f in a conservative way. It is easy to see that the same trick can be applied
to generic d-valued functions f : Ln

d → Lm
d ; instead of the number of missing or

exceeding 1s, we just compute the missing or exceeding number of energy units,
and we provide an appropriate number of additional input and output lines.

3. CONSERVATIVE COMPUTATIONS

Let us now introduce the notion of conservative computation. Let G : Ln
d →

Lm
d be the function computed by an (n,m, d)-gate. Moreover, let Sin = 〈x1, x2, . . .,

xk〉 be a sequence of elements from Ln
d to be used as input patterns for the gate,

and let Sout = 〈G(x1),G(x2), . . . ,G(xk)〉 be the corresponding sequence of output
patterns from Lm

d . Let us consider the quantities ei = En(xi) − Em(G(xi)) for all
i ∈ {1, 2, . . . , k}; note that, without loss of generality, by an appropriate rescaling
we may assume that all eis are integer values. We say that the computation of Sout,
obtained starting from Sin, is conservative if the following condition holds:

k∑
i=1

ei =
k∑

i=1

En(xi) −
k∑

i=1

Em(G(xi)) = 0

This condition formalizes the requirement that the total energy provided by all
input patterns of Sin is used to build all output patterns of Sout. Of course, it may
happen that ei > 0 or ei < 0 for some i ∈ {1, 2, . . . , k}. In the former case, the
gate has an excess of energy that should be dissipated into the environment after
the production of the value G(xi), whereas in the latter case the gate does not have
enough energy to produce the desired output pattern. Since we want to avoid these
situations, we assume to perform computations through gates which are equipped
with an internal accumulator (also storage unit) which is able to store a maximum
amount C of energy units. We call C the capacity of the gate. The amount of
energy contained into the internal storage unit at a given time can thus be used
during the next computation step if the energy of the output pattern that must be
produced is greater than the energy of the corresponding input pattern.

If the output patterns G(x1), G(x2), . . . ,G(xk) are computed exactly in this
order then, assuming that the computation starts with no energy stored into the

866 Cattaneo, Della Vedova, Leporati, and Leporini

gate, it is not difficult to see that st1 := e1, st2 := e1 + e2, . . . , stk := e1 + e2 +
· · · + ek is the sequence of the amounts of energy stored into the gate during the
computation of Sout. We say that a given conservative computation is C-feasible
if 0 ≤ sti ≤ C for all i ∈ {1, 2, . . . , k}. Notice that for conservative computations
it always holds stk = 0.

In some cases, the order with which the output patterns of Sout are com-
puted does not matter. We can thus consider the following problem: Given an
(n,m, d)-gate that computes the map G : Ln

d → Lm
d , an input sequence x1, . . . , xk

and the corresponding output sequence G(x1), . . ., G(xk), is there a permuta-
tion π ∈ Sk (the symmetrical group of order k) such that the computation of
G(xπ(1)),G(xπ(2)), . . . ,G(xπ(k)) is C-feasible? This is a decision problem, whose
relevant information is entirely provided by the values e1, e2, . . . , ek , which can
be formally stated as follows.

Problem 3.1. NAME: CONSCOMP.

• INSTANCE: a set E = {e1, e2, . . . , ek} of integer numbers such that e1 +
e2 + · · · + ek = 0, and an integer number C > 0.

• QUESTION: is there a permutation π ∈ Sk such that ∀ i ∈ {1, 2, . . . , k}

0 ≤
i∑

j=1

eπ(j) ≤ C? (3)

The CONSCOMP problem can be obviously solved by trying every possible
permutation π from Sk . However, this procedure requires an exponential time
with respect to k, the length of the computation. A natural question is whether
it is possible to give the correct answer in polynomial time. With the following
theorem we show that the CONSCOMP problem is NP-complete. As it is well known
(Garey and Johnson, 1979), this means that if there would exist a polynomial time
algorithm that solves the problem then we could immediately conclude that the
two complexity classes P and NP coincide, a very unlikely situation.

Theorem 3.1. CONSCOMP is NP-complete.

Proof: CONSCOMP is clearly in NP, since a permutation π ∈ Sk has linear length
and verifying whether π is a solution can be done in polynomial time. In order to
conclude that CONSCOMP is NP-complete, let us show a polynomial reduction from
PARTITION, which is a well-known NP-complete problem (Garey and Johnson,
1979, page 47).

Let A = {a1, a2, . . . , ak} be a set of positive integer numbers, and let m =∑k
i=1 ai . The set A is a positive instance of PARTITION if and only if there exists

a set A′ ⊆ A such that
∑

a∈A′ a = m
2 . If m is odd then A is certainly a negative

Towards a Theory of Conservative Computing 867

instance, and we can associate it to any negative instance of CONSCOMP. On the
other hand, if m is even we build the corresponding instance (E, C) of CONSCOMP

by putting C = m
2 and E = {e1, e2, . . . , ek, ek+1, ek+2}, where ei = −ai for all i ∈

{1, 2, . . . , k} and ek+1 = ek+2 = m
2 . It is immediately seen that this construction

can be performed in polynomial time.
We claim that A is a positive instance of PARTITION if and only if (E, C)

is a positive instance of CONSCOMP. In fact, let us assume that A is a positive
instance of PARTITION. Then there exists a set A′ ⊆ A such that

∑
a∈A′ a = m

2 ,
and the corresponding negative elements of E constitute a subset E ′ such that∑

e∈E ′ e = −m
2 . We build a permutation π ∈ Sk by selecting first the element ek+1

followed by the elements of E ′ (chosen with any order), and then ek+2 followed by
the remaining elements of E . It is immediately seen that π satisfies the inequalities
stated in (3), and hence (E, C) is a positive instance of CONSCOMP. Conversely,
let us assume that (E, C) is a positive instance of CONSCOMP. Then there exists
a permutation π ∈ Sk that satisfies the inequalities stated in (3). Since the first
chosen element cannot be negative, it must necessarily be m

2 . Moreover, since
C = m

2 , the second m
2 can be chosen if and only if the energy stored into the gate

is zero, that is, if and only if there exists a set E ′ ⊆ E of negative elements whose
sum is equal to −m

2 . The opposites of these elements constitute a set A′ ⊆ A

such that
∑

a∈A′ a = m
2 , and thus we can conclude that A is a positive instance of

PARTITION. �

4. A FRAMEWORK FOR THE STUDY OF ENERGY-BASED
PROPERTIES OF COMPUTATIONS

In this section we introduce a framework which can be used to define and
study energy-based properties of computations performed by (n,m, d)-gates. The
crucial idea of our framework is that we look at computations as a sequence
of conditional movements of energy. That is, the gate computes its output pat-
tern as follows: for a given subset of input lines, a condition on their values is
checked; if this condition is verified then a given action is performed, transforming
such values, otherwise no transformation is applied. Successively, another con-
dition is checked on another subset of lines (comprising the output lines from
the first step of computation), which determines whether another action has to
be performed, and so on until the required values are obtained on the output
lines.

To realize the gate according to the aforementioned procedure, we need a
(Boolean) control equipment, and two primitives to conditionally move energy
from a given line to another one. We call these primitives conditional up (CUP)
and conditional down (CDOWN). The realization of the gate can thus be viewed
as a circuit composed by these simpler elements. Let us first describe CUP and
CDOWN as d-valued gates. In the following, we will provide a quantum realization

868 Cattaneo, Della Vedova, Leporati, and Leporini

Fig. 1. (a) The conditional up (CUP) gate. (b) Realization of the Boolean Fredkin gate through
two-valued CUPs and CDOWNs.

as formulae composed of creation and annihilation operators on C
d , as we have

done for the gates presented in (Cattaneo et al., in press).
The CUP gate is depicted in Fig. 1 (a). It is a (3, 3, d)-gate whose behavior is:

Input: (c, a, b) ∈ L3
d

if c = 1
then Output

(
c, a + 1

d−1 , b − 1
d−1

)
else Output (c, a, b)

As we can see, c is a control line whose input value is returned unchanged. The
condition c = 1 enables the movement of a quantity δ of energy from the third to
the second line. Of course, this action is performed only if possible, that is, only if
a = 1 and b = 0 (equivalently, if the energy values associated to the second and
third line are not ε1 and ε0, respectively). If these conditions are not satisfied, or
if c = 1, then the gate behaves as the identity. Starting from this description, for
any integer d ≥ 2 we can easily write the truth table of the d-valued CUP gate.

Analogously, the behavior of the complementary (3, 3, d)-gate CDOWN is:

Input: (c, a, b) ∈ L3
d

if c = 1
then Output (c, a − 1

d−1 , b + 1
d−1)

else Output (c, a, b)

Let us note that CDown(c, a, b) can be obtained from CUp(c, a, b) (and vice
versa) by exchanging the second and the third line before and after the application
of CUP.

Figure 1(b) shows how, using the Boolean versions of CUP and CDOWN gates,
we can implement the Boolean Fredkin (controlled switch) gate. Since the Fredkin
gate is functionally complete for Boolean logic, using only two-valued CUP and
CDOWN gates we can realize any Boolean circuit. In principle, these Boolean
circuits, together with d-valued CUPs and CDOWNs, can realize any conditional
movement of energy, that is, any conceivable computation that can be performed
by (n,m, d)-gates.

Towards a Theory of Conservative Computing 869

It is clear that implementing a gate, be it conservative or not, using only these
primitives allows one to visualize the movement of energy between different parts
of the gate during a computation. Such visualization may help us to optimize some
aspects of the implementation of the gate, namely, the amount of energy moved and
the extension of energy jumps. As shown in (Leporati, 2002), such optimizations
can be obtained by splitting (if possible) a given (N,M, d)-gate H into k blocks,
so that its computation can be performed by an appropriate (N/k,M/k, d)-gate
G equipped with a storage unit of capacity C. However, the minimization of the
amount of energy moved between different parts of H during the computation is
equivalent to the minimization of C, and hence it constitutes an NP-hard problem,
whose decision version is the NP-complete problem CONSCOMP. This means that
the reorganization of the internal machinery of H to optimize the movements of
energy is considered a difficult problem.

Now let us turn to the quantum realization of CUP and CDOWN. Generally, a
quantum gate acts on memory cells that are d-level quantum systems called qudits
(see Cattaneo et al., in press; and Gottesman, 1999). A qudit is typically imple-
mented using the energy levels of an atom or a nuclear spin. The mathematical
description—independent of the practical realization—of a single qudit is based
on the d-dimensional complex Hilbert space C

d . In particular, the truth values of
Ld are represented by the unit vectors of the canonical orthonormal basis, called
the computational basis of C

d :

|0〉 =

1

0
...

0

0

,

∣∣∣∣ 1

d − 1

〉
=

0

1
...

0

0

, . . . ,

∣∣∣∣d − 2

d − 1

〉
=

0

0
...

1

0

, |1〉 =

0

0
...

0

1

A collection of n qudits is called a quantum register of size n. It is mathemat-
ically described by the Hilbert space ⊗n

C
d = C

d ⊗ · · · ⊗ C
d︸ ︷︷ ︸

n times

. An n-configuration

is a vector |x1〉 ⊗ · · · ⊗ |xn〉 ∈ ⊗n
C

d , simply written as |x1, . . . , xn〉, for xi running
on Ld . An n-configuration can be viewed as the quantum realization of the “clas-
sical” pattern (x1, . . . , xn) ∈ Ln

d . Let us recall that the dimension of ⊗n
C

d is dn

and that the set {|x1, . . . , xn〉 : xi ∈ Ld} of all n-configurations is an orthonormal
basis of this space, called the n-register computational basis.

Unlike the situation of the classical wired computer where voltages of a wire
go over voltages of another, in quantum realizations of classical gates something
different happens. First of all, in this setting every gate must have the same
number of input and output lines (that is, they must be (n, n, d)-gates). Each qudit
of a given register configuration |x1, . . . , xn〉 (quantum realization of an input

870 Cattaneo, Della Vedova, Leporati, and Leporini

pattern) is in some particular quantum state |xi〉 and an operation G : ⊗n
C

d �→
⊗n

C
d is performed which transforms this configuration into a new configuration

G(|x1, . . . , xn〉) = |y1, . . . , yn〉, which is the quantum realization of an output
pattern. In other words, a quantum realization of an (n, n, d)-gate is a linear
operator G that transforms vectors of the n-register computational basis into
vectors of the same basis. The action of G on a non-factorized vector, expressed
as a linear combination of the elements of the n-register basis, is obtained by
linearity.

The collection of all linear operators on C
d is a d2-dimensional linear space

whose canonical basis is:

{Ex,y = |y〉 〈x| : x, y ∈ Ld}

Since Ex,y |x〉 = |y〉 and Ex,y |z〉 = 0 for every z ∈ Ld such that z = x, this op-
erator transforms the unit vector |x〉 into the unit vector |y〉, collapsing all the
other vectors of the canonical orthonormal basis of C

d into the null vector. For
i, j ∈ {0, 1, . . . , d − 1}, the operator E i

d−1 ,
j

d−1
can be represented as an order d

square matrix having 1 in position (j + 1, i + 1) and 0 in every other position:

E i
d−1 ,

j

d−1
= (δr,j+1δi+1,s)r,s=1,2,...,d

Each of the operators Ex,y can be expressed, using the whole algebraic struc-
ture of the associative algebra of operators, as a suitable composition of creation
and annihilation operators. An alternative approach, that uses spin-creation and
spin-annihilation operators, is shown in (Cattaneo et al., in press). We recall that
the actions of the creation operator a† and of the annihilation operator a on the
vectors of the canonical orthonormal basis of C

d are

a†
∣∣∣∣ k

d − 1

〉
= √

k + 1

∣∣∣∣ k + 1

d − 1

〉
for k ∈ {0, 1, . . . , d − 2}

a† |1〉 = 0

and

a

∣∣∣∣ k

d − 1

〉
=

√
k

∣∣∣∣ k − 1

d − 1

〉
for k ∈ {1, 2, . . . , d − 1}

a |0〉 = 0

respectively. Hence, if denote by A
p,q,r
u,v the expression

v · · · v︸ ︷︷ ︸
r

v∗ · · · v∗︸ ︷︷ ︸
q

v · · · v︸ ︷︷ ︸
p

u

Towards a Theory of Conservative Computing 871

where u, v ∈ {a†, a}, v∗ is the adjoint of v, and p, q, r are non negative integer
values, then for any i, j ∈ {0, 1, . . . , d − 1} we can express the operator E i

d−1 ,
j

d−1

in terms of creation and annihilation as follows:

E i
d−1 ,

j

d−1
=

√
j !

(d−1)!A
d−2,d−1−j,0
a†,a† if i = 0

√
j !

(d−1)!A
d−1,d−1−j,0
a,a† if i = 1 and j ≥ 1

√
i!

(d−1)!
√

j !
A

d−2−i,d−1,j

a†,a† if (i = 1, j = 0 and d ≥ 3) or

(1 < i < d − 2 and j ≤ i)
√

j !
(d−1)!

√
i!
A

i−1,d−1,d−1−j
a,a if (i = d − 2, j = d − 1 and d ≥ 3)

or (1 < i < d − 2 and j > i)
1√

(d−1)!j !(d−1)
A

d−1,j,0
a†,a

if i = d − 2 and j ≤ d − 2
1√

(d−1)!j !
A

d−2,j,0
a,a if i = d − 1

Classical (n, n, d)-gates can be quantistically realized as sums of tensor
products of the operators Ex,y as follows. Let x1x2 · · · xn �→ y1y2 · · · yn be a
generic row of the truth table of an (n, n, d)-gate. For what we have said ear-
lier, the operator Ex1,y1 ⊗ Ex2,y2 ⊗ · · · ⊗ Exn,yn

transforms the input configuration
x1x2 · · · xn into the output configuration y1y2 · · · yn, and collapses all the other
input configurations of the n-register basis to the null vector. It is not difficult to
see that if O0, . . . ,Odn−1 are the “local” operators associated to the dn rows of
the truth table, then the operator O = ∑dn−1

i=0 Oi is a quantum realization of the
(n, n, d)-gate. Notice that the resulting operator O is not necessarily a unitary
operator.

Starting from the truth tables of the d-valued gates CUP and CDOWN we can
thus build the corresponding linear operators that realize them. For example, it
is not difficult to see that the non-unitary linear operator—acting on the Hilbert
space C

2 ⊗ C
2 ⊗ C

2—which realizes the Boolean CUP gate is:

Id ⊗ Id ⊗ Id − c†c ⊗ aa† ⊗ b†b + (Id ⊗ a† ⊗ b)(c†c ⊗ aa† ⊗ b†b) (4)

where Id is the identity operator of C
2 and, for the sake of clearness, we have

written c†, a†, b† (resp., c, a, b) to denote the creation (resp., annihilation) op-
erator of C

2 applied onto the subspaces of C
2 ⊗ C

2 ⊗ C
2 corresponding to the

first, second and third input, respectively. In fact, the gate behaves as the iden-
tity if the input pattern |xc, xa, xb〉 is different from (1, 0, 1), since in these cases
(c†c ⊗ aa† ⊗ b†b) |xc, xa, xb〉 = 0, the null vector of C

2 ⊗ C
2 ⊗ C

2. On the other
hand (c†c ⊗ aa† ⊗ b†b) |1, 0, 1〉 = |1, 0, 1〉, hence the first two terms of (4) dis-
appear and the operator (Id ⊗ a† ⊗ b) is applied on |1, 0, 1〉, giving |1, 1, 0〉 as
required.

872 Cattaneo, Della Vedova, Leporati, and Leporini

In a completely analogous way we can see that the non-unitary linear operator
which realizes the Boolean CDOWN gate is:

Id ⊗ Id ⊗ Id − c†c ⊗ a†a ⊗ bb† + (Id ⊗ a ⊗ b†)(c†c ⊗ a†a ⊗ bb†)

Let us note that the use of creation and annihilation operators allows for differ-
ent physical implementations. For example, we can view computation not only as
a conditional movement of energy but also as a conditional movement of particles
between systems that may contain at most d − 1 of particles. Alternatively, we
can view computation as a sequence of conditional switches of the value of the
z-component of the angular momentum of microscopical physical systems, using
spin-creation and spin-annihilation instead of creation and annihilation operators
(Cattaneo et al., in press).

5. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

In this paper, we have proposed the first steps towards a theory of conser-
vative computing, where the amount of energy associated to the data which are
manipulated during the computations is preserved.

The first obvious extension of our model is to take into account the en-
ergy used to perform computations, that is, to transform input values into output
values. A first idea is to consider some additional power source input lines and
dissipation output lines. Power source lines are fixed to a constant value from
Ld (usually 1), and absorb energy from the environment. This energy is en-
tirely consumed during the computation, whereas all the energy associated to the
input pattern is returned by the output pattern. On the other hand, dissipation
lines are used to model the release of energy into the environment; hence, their
value is simply discarded. Conservative gates constitute a special case in our
framework, where there are neither power source nor dissipation lines (under the
hypothesis that we do not take into account the energy needed to perform the
computation).

Since perfect conservation of energy can be obtained only in theory, a second
possibility for future work could be to relax the conservativeness constraint (2),
by assuming that the amount of energy dissipated during a computation step is
not greater than a fixed value. Analogously, we can suppose that if we try to
store an amount of energy that exceeds the capacity of the gate then the energy
which cannot be stored is dissipated. In such a case, it should be interesting to
study trade-offs between the amount of energy dissipated and the hardness of the
corresponding modified CONSCOMP problem.

Finally, it remains to study how to theoretically model and physically realize
gates equipped with an internal storage unit. Here we just observe that, from a
theoretical point of view, it seems appropriate to consider this kind of gates as

Towards a Theory of Conservative Computing 873

finite state automata, by viewing the energy levels of the storage unit as their
states.

ACKNOWLEDGMENTS

This work has been supported by MIUR\ COFIN project “Formal Languages
and Automata: Theory and Applications.”

REFERENCES

Cattaneo, G., Leporati, A., and Leporini, R. (2002). Fredkin gates for finite-valued reversible and
conservative logics. Journal of Physics A: Mathematical and General 35, 9755–9785.

Cattaneo, G., Leporati, A., and Leporini, R. (in press). Quantum conservative gates for finite-valued
logics. International Journal of Theoretical Physics.

Fredkin, E. and Toffoli, T. (1982). Conservative logic. International Journal of Theoretical Physics
21, 219–253.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability. A Guide to the Theory on
NP-completeness, W. H. Freeman and Company.

Gottesman, D. (1999). Fault-tolerant quantum computation with higher-dimensional systems. Chaos,
Solitons, and Fractals 10, 1749–1758.

Leporati, A. (2002). Threshold Circuits and Quantum Gates. Ph.D. thesis, Computer Science
Department, University of Milan, Italy.

Petri, C. A. (1967). Gründsatzliches zur Beschreibung diskreter Prozesse. In Proceedings of the
3rd Colloquium über Automatentheorie, Hannover, 1965; Birkhäuser Verlag, Basel, pp. 121–140
(English translation: Fundamentals of the Representation of Discrete Processes, ISF Report 82.04
(1982)).

Rescher, N. (1969). Many-Valued Logics, McGraw-Hill, New York.
Rosser, J. B. and Turquette, A. R. (1952). Many-Valued Logics, North Holland, Amsterdam.

